416 research outputs found

    An intelligent, multi-transducer signal conditioning design for manufacturing applications

    Get PDF
    This paper describes a flexible, intelligent, high bandwidth, signal conditioning reference design and implementation, which is suitable for a wide range of force and displacement transducers in manufacturing applications. The flexibility inherent in the design has allowed more than 10 specialised transducer conditioning boards to be replaced by this single design, in a range of bespoke mechanical test equipment manufactured by the authors. The board is able to automatically reconfigure itself for a wide range of transducers and calibrate and balance the transducer. The range of transducers includes LVDT, AC/DC strain gauge and inductive bridges, and a range of standard industrial voltage current interface transducers. Further, with a minor lowcost addition to the transducer connector, the board is able to recognise the type of transducer, reconfigure itself and store the calibration data within the transducer, thereafter allowing a plugand-play operation as transducers are changed. The paper provides an example of the operation in typical manufacturing test application and illustrates the stability and noise performance of the design

    cath-resolve-hits: A new tool that resolves domain matches suspiciously quickly

    Get PDF
    Motivation. Many bioinformatics areas require us to assign domain matches onto stretches of a query protein. Starting with a set of candidate matches, we want to identify the optimal subset that has limited/no overlap between matches. This may be further complicated by discontinuous domains in the input data. Existing tools are increasingly facing very large data-sets for which they require prohibitive amounts of CPU-time and memory. Results. We present cath-resolve-hits (CRH), a new tool that uses a dynamic-programming algorithm implemented in open-source C++ to handle large datasets quickly (up to ∼1 million hits/second) and in reasonable amounts of memory. It accepts multiple input formats and provides its output in plain text, JSON or graphical HTML. We describe a benchmark against an existing algorithm, which shows CRH delivers very similar or slightly improved results and very much improved CPU/memory performance on large datasets

    The history of the CATH structural classification of protein domains

    Get PDF
    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families

    Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds

    Get PDF
    This article is dedicated to the memory of Cyrus Chothia, who was a leading light in the world of protein structure evolution. His elegant analyses of protein families and their mechanisms of structural and functional evolution provided important evolutionary and biological insights and firmly established the value of structural perspectives. He was a mentor and supervisor to many other leading scientists who continued his quest to characterise structure and function space. He was also a generous and supportive colleague to those applying different approaches. In this article we review some of his accomplishments and the history of protein structure classifications, particularly SCOP and CATH. We also highlight some of the evolutionary insights these two classifications have brought. Finally, we discuss how the expansion and integration of protein sequence data into these structural families helps reveal the dark matter of function space and can inform the emergence of novel functions in Metazoa. Since we cover 25 years of structural classification, it has not been feasible to review all structure based evolutionary studies and hence we focus mainly on those undertaken by the SCOP and CATH groups and their collaborators

    VarSite: disease variants and protein structure

    Get PDF
    VarSite is a web server mapping known disease-associated variants from UniProt and ClinVar, together with natural variants from gnomAD, onto protein 3D structures in the Protein Data Bank (PDB). The analyses are primarily image-based and provide both an overview for each human protein, as well as a report for any specific variant of interest. The information can be useful in assessing whether a given variant might be pathogenic or benign. The structural annotations for each position in the protein include protein secondary structure, interactions with ligand, metal, DNA/RNA, or other protein, and various measures of a given variant's possible impact on the protein's function. The 3D locations of the disease-associated variants can be viewed interactively via the 3dmol.js JavaScript viewer, as well as in RasMol and PyMOL. Users can search for specific variants, or sets of variants, by providing the DNA coordinates of the base change(s) of interest. Additionally, various agglomerative analyses are given, such as the mapping of disease and natural variants onto specific Pfam or CATH domains. The server is freely accessible to all at: https://www.ebi.ac.uk/thornton-srv/databases/VarSite. This article is protected by copyright. All rights reserved

    Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    Get PDF
    Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterised. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional subclassification of CATH superfamilies. The superfamilies are subclassified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer

    CATH FunFHMMer web server: protein functional annotations using functional family assignments

    Get PDF
    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer

    CATH: an expanded resource to predict protein function through structure and sequence

    Get PDF
    The latest version of the CATH-Gene3D protein structure classification database has recently been released (version 4.1, http://www.cathdb.info). The resource comprises over 300 000 domain structures and over 53 million protein domains classified into 2737 homologous superfamilies, doubling the number of predicted protein domains in the previous version. The daily-updated CATH-B, which contains our very latest domain assignment data, provides putative classifications for over 100 000 additional protein domains. This article describes developments to the CATH-Gene3D resource over the last two years since the publication in 2015, including: significant increases to our structural and sequence coverage; expansion of the functional families in CATH; building a support vector machine (SVM) to automatically assign domains to superfamilies; improved search facilities to return alignments of query sequences against multiple sequence alignments; the redesign of the web pages and download site

    The Gene3D Web Services: a platform for identifying, annotating and comparing structural domains in protein sequences

    Get PDF
    The Gene3D structural domain database provides domain annotations for 7 million proteins, based on the manually curated structural domain superfamilies in CATH. These annotations are integrated with functional, genomic and molecular information from external resources, such as GO, EC, UniProt and the NCBI Taxonomy database. We have constructed a set of web services that provide programmatic access to this integrated database, as well as the Gene3D domain recognition tool (Gene3DScan) and protein sequence annotation pipeline for analysing novel protein sequences. Example queries include retrieving all curated GO terms for a domain superfamily or all the multi-domain architectures for the human genome. The services can be accessed using simple HTTP calls and are able to return results in a range of formats for quick downloading and easy parsing, graphical rendering and data storage. Hence, they provide a simple, but flexible means of integrating domain annotations and associated data sets into locally run pipelines and analysis software. The services can be found at http://gene3d.biochem.ucl.ac.uk/WebServices/

    Functional innovation from changes in protein domains and their combinations

    Get PDF
    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level
    corecore